
MATHEMATICS OF COMPUTATION 
VOLUME 38, NUMBER 157 
JANUARY 1982 

Spline Interpolation at Knot Averages 
on a Two-Sided Geometric Mesh* 

By M. J. Marsden 

Abstact. For splines of degree k > 1 with knots -ti = t2m+ = 1 + q + q2 
+ - * * +qm'-, i = 1, . . ., m, where 0 < q < 1, it is shown that spline interpolation to 
continuous functions at nodes Ti = Sk Wjt, i = 1, . . ., n = 2m -k-1, has operator 
norm IIPII which is bounded independently of q and m as q tends to zero if and only if 
(1-wlt <zj (1-wk)k < 1, and wj > 0, j = 1, . k. The choice of nodes T= 

wt+ and the growth rate of IIPII with k are also discussed. 

1. Two-Sided q-Splines. To integers n > 0, k > 0, and a nondecreasing sequence 
t = (t,)n+k+l with ti < t1+k+, = 1, . . ., n, is associated Sk+ l the space of 

polynomial splines of order k + 1 with knot sequence t, defined by Sk+lt= 

span{NI, . .. , Nn), where each Ni = Ni,k+1 is an appropriate normalized B-spline. 
See [1] for specific details. 

With q > 0, m a positive integer, n = 2m - k -1, and 

(1.1) = (+q+ -( + qmI-), +l.. ,2m, 

(1.1) = 1 ~+ q + ...+qi-- i=m + 1, . . .,. 2m, 

Sk + l t is the space of two-sided q-splines. 
Each two-sided q-spline can be represented as 

m-1 k 

s(t) = - t)+]+ jAmm+jtk 

(1.2) 1 

+ E Am+k+j-qj(t tm+j)+]k 

where u+ = max{ u, 0), with the endpoint conditions 

(1.3) s(i) (t,) = s (A)t2m ) = O, i= O, . . .,~ k - 1. 

Conversely, each function of the form (1.2) which satisfies (1.3) is a two-sided 
q-spline. 

With the notation 

[i]=l+q+ + +q'-, i=O,l,... 

relations such as 

tj+I-ti = qm-[i + 1-i] 0 i < ?j < m, 
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and 

ti+l-j=q-[i + I -j], m <j <i <2m, 
can be stated in a compact form. The notation 

[i]!=[i][i -l ] [2][1] and [ [I]! 
[i]![j - i 

will also be useful. 
The clause "as q tends to zero" appears throughout this paper. It will always 

mean "for all q satisfying 0 < q < qo". The specific choice of qo will vary from 
instance to instance. However, qo will never depend on m. 

LEMMA 1.1. With k and m fixed, let { s} be a set of two-sided q-splines with 
{(A1, ... ., A 2m+k-)} the corresponding set of coefficient vectors in (1.2). Then {s) is 
uniformly bounded as q tends to zero if and only if {(Aj)) is uniformly bounded as q 
tends to zero. Moreover, if the bound on {s} is independent of m, then so is the bound 
on {(Aj)}. 

Proof. Let 1 > qo > 0 and C be such that 

IAjl < C, allj and 0 < q < qo. 
Then, for each real t and 0 < q < q0, 

m-1 k m-1 

Is(t)l < C [qJm(tj+l - tl)1 + 2 t2m + j [q'(t2m - 

0 1 

m-1 k m-1 
= [IV E j]k + E [M]j + E [m _nj]k (2m + k I- )C[m]k) 

I ~0 1 

< (2m + k - 1)Cmk. 

Conversely, let 1 > qo > 0 and B be such that 

Is(t)I < B, all real t and 0 < q < qo. 
Since 

k 

E Am+j(ilkY = s(ilk), i = O ... ., k, 
0 

is a matrix equation with nonsingular coefficient matrix V = ((i/ky) depending 
only on k, 

IAm+jI < (k + I)BkB, j = 0,. .., k, 

where Bk is a bound on the entries of V-1. Set CO = (k + I)BkB and assume 
inductively that q1 is such that JAm jl < Cj for j = 0, 1, . . ., i-1 for q < ql. 
From (1.2) 

s(tm i) - s(tm -i+ I) = Am-i + , Am j([i -j + 1]k _[i _j]k) 

+ , Am+ (-j([i + 1] [i ]j), 
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so that 
i-1 k 

IAM-il < 2B + C)(ji -j + I] -[ i -j]k) + CO i + ]j [i]') 

i-1 k 

< 2B + 2 Cj q'1-k( I-qo)-k + CO0E qJ(l -qo)-j 
1 1 

< 2B + E Cjq'-jRk with Rk = k2(1 -qo)-k 
0 

Setting Ci = 2B + I'-' Cjq'-.JRk allows the induction to proceed. Then C1 = 2B 
+ C0qIRk, and C+ I = ql(l + Rk)Ci + 2B(1 - ql), i = 1, ... - m-2. This recur- 
rence solves as 

CI -Bl-ql= [I - (q1 + q,Rk)'] + CI(q, + q,Rk)i- 
1 

1 - q1 - qIRk 

i=l...,5m-1I, 

if q1 + qIRk # 1. Imposing the added restriction q1 + qIRk <2 and noting that a 
symmetric argument will yield IAm+k+jl ? C,j = 1, ... , m- 1, establishes that 

maxIlAIl < max C, < 4B + C1 + CO. 
I i 

This bound is independent of m if B is independent of m. O 

LEMMA 1.2. Let k and m be fixed. As q tends to zero, the coefficients (A1) satisfy 

Ai + Ajq(/)(k + E Am+jO(q 0 i 1, . . ., k - 1, 
i+ 1k-i 

and 

Ak + E Aj[k J + E Am+ qmklj( + O( 
k+1 [kJ 0 [] 

Proof. This follows from (1.3). Let functionals A iV 1 S i < v < k, be defined by 

A'1 5 = q (m-1)(k-,v) !(_lIk-, ^(k -v)(t I 

and, recursively, 

A, s = qk-k(Ai Vs - i ]Ai- 1 

From (1.2) 

k~~~k (tk1) = E l) Ajq(j m)(k-,v) * (_I)k-p[ j]p 

+ Y, A + tj-k+v, 

k -v (j -k + )! 

whence 
m-i k 

As = Ajq(J-l)(k-v)[j]v + , Am (m-l)(k-v)C 
1 k-v 
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where 

Clj" = k! (j - k + P)! -)-,-k+ 

The recursion formula gives 

rn-i 1 k 

Aivs = E AjqI i)(k )[j]Pi J + i A +jq(m-i)(k-v)C 

where 

Ci = (ci_IJv-[, - [ - q CiIj,^_1)/[ . 

From (1.3) each Aivs = 0 and, in particular, Aiis = 0. This fact, along with the 
observation that Ckjk = Cljk/[k]! + O(qm-k+l) completes the proof. U] 

Combining Lemmas 1.1, 1.2, and a symmetric counterpart of Lemma 1.2 yields 

LEMMA 1.3. Let k and m be fixed and let {s} be a set of two-sided q-splines which 
is bounded as q tends to zero. Then the corresponding set of coefficient vectors ((Aj)} 
satisfies 

A1= O(q k), i = 1 ..., k- 1, 
Ai= Of0 1)= k, ...,.2m, 

A2m+i= O(q )5 i = 1, ... ., k- 1, 

as q tends to zero. If the bound on {s} is independent of m, then so are the bounds on 
the Aj. 

The independence of m in the O(qk i) and O(q') bounds follows from the 
exponential decay of the coefficients in the first k - 1 equations of Lemma 1.2. 

2. Spline Interpolation. Let T = (Ti)n be a strictly increasing sequence. It is known 
[1] that: For each function f defined on T there is exactly one s E S,+ l such that 
s(Ti) = f(T), i = 1, . .. , n, if and only if N,(Ti) > 0, i = 1, .. . , n, or, equivalently, 
if and only if 

(2.1) ti < T, < ti+k+0 ,... n. 

When T satisfies (2. 1) a linear map P into Sik + lIt which reproduces Sk + ,, may be 
defined by: For each function f defined on T, Pf E Sk+ l and (Pf)(i) = f(Ti), 

= 1, .. ., n. In fact, Pf = I f(Tj)Lj where (Lj)n7 is defined by Lj(Ti) = 8ij, i,j = 

1, .. ., n. The operator norm of P is 

IlPil = sup Pf 11 
f lfil 

where the sup is taken over all f E C[tI, tn+k+I] and 

IIll = Sup{Af(t): tl < t < tn+k+l). 

It is well known that 

IIPII = max I L1(t)l = max ( max Si, (t) , 
1 0 <,u<n 
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where To = tl, Tn1+ 
= tn+k+1 and (s,)' is defined by 

(2.2) SA(i) = -1) , i = 1, 

= -(-j)i+! i = y + n, ,n 

For each ,u, the so-called Lebesgue function I JL,(t)j coincides with s,,(t) on the 
interval [Tr, T, + 1 

One way of specifying T iS to require that the nodes be knot averages, i.e., 
k + l 

(2.3) Ti = E wi ti +j, ,... n, 
0 

where the wi are fixed nonnegative numbers which sum to one. 

THEOREM 1. Let k > 2, m, and (wi)k+' be fixed. Let t be given by (1.1) and T be 
given by (2.3). If II P I is bounded as q tends to zero, then 

(2.4) wi>O, i=1,...,k. 

If the bound on 1P is also independent of m, then either 

(2.5)a w = O and (_ -W)k < 

or 

(2.5)b wo > O and 2< (I_WO)k 

and, either 

(2.6)a Wk+ I = O and (I1 Wk)k < 

or 

(2.6)b Wk+l > 0 and < 
< (1 _ 

Wk+l)k. 

Conversely, if (2.4), (2.5), (2.6) hold, then IIPII is bounded independently of m as q 
tends to zero. 

Proof. Let wa be the first positive weight and wb be the last positive weight, so 
that Ti = :b wjti+j, and set 

= (1 - Wa) + (1 Wa - wa+ j)q + + wbq a I 

02 (1 Wb) + (I1 Wb wb- I)q + . . -+ wa 

If a = b, then = 02 = 0. If a <b, then 0 <90 < 1 and 0 <92 < 1 as q tends to 
zero. Therefore, 

ti+b- < Ti = ti+b - 2q b-i < ti+b i=1,..., m - b, 

(2.7) ti+a < Ti = ti+a + Olq i+a < ti+a+1 m - a + 1, ..., 

for all sufficiently small q > 0. Since 
m-i 

(2.8) T, = 1-22 w, + O(q), i= -b + 1,. .., nm-a, 
a 

as q tends to zero, it follows that also 

(2.9) -1 < Tm-b+ I < Tm-b+2 < < Tm-a < + 

for all sufficiently small q > 0. 
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Henceforth, we require that q be such that the inequalities in (2.7) and (2.9) hold. 
This requirement is independent of m. 

Now let 11P 1 be bounded independently of m as q tends to zero. We shall prove 
that (2.4) and (2.6) must hold. A symmetric argument, which we omit, will give 
(2.5). 

Let s = s,, be defined by (2.2) with ,u < m - b + 1 or ,i > m- a -1. There is a 
constant C which bounds IIPII so that Ilsll < C as q tends to zero. Since the 
restriction of s to [-1, + 1] is a polynomial of degree k, it follows from a theorem of 
A. A. Markov (see [7]) that 

max{Is'(t)I: -1 < t < 1 Ck2. 

Thus, (2.8), (2.9), and the mean-value theorem imply that 

2 = Is(T) -s(-i+) < Ck-2(i - I 2Ck2wm_j + O(q) 
for i = m-b + 1, . . ., m-a-l as q tends to zero. Thus, wi > /Ck2 > O, 
i=a+ l,...,b-1. 

Suppose that b < k. Then, on the one hand, (1.2) gives 
m-1 

bk k 
_1 = = rniE Aj([j - b] + 2qj-b) + A+j(-[m - b] - 92q m-b) 

b 0 
m-I 

I Ab + E Aj([j - b]k + o(qj-b)) 
b+ 1 

k 
+ E Am+j((-[m - b] + O(q b)) 

0 

whereas, on the other hand, with Aiis as in the proof of Lemma 1.2, 
k-i 

0 = o2kAbbS + [i - b]k Aiis + [ k]!As 
b+ 1 

m-1 
= Ab92 + E A( j - b]k + O(qj-b)) 

b+ 1 

k 
+ E Am+j((-[m -b] + O(q mb)). 

0 

Subtraction yields 
m-1 k 

_1 = i Ajo(qj b) + E Am JO(qm-b) 
b+1 0 

so that (Aj) cannot be bounded as q tends to zero. This contradiction to Lemma 1.3 
shows that b > k. 

A similar argument with s(Tn) shows that a < 1, so that (2.4) is proved. 
To prove (2.6), we first suppose that wk+ I = O. We must show that (1 - Wk)k < 2 

or, equivalently, that 

(2.10) r= k/ (I - f9k) < 1 as q tends to zero. 

Again, let s = s, be defined by (2.2). Then Lemma 1.2 and (1.2) give 
r-k-i k 

(2.11) -S(T1) =[k]!AkkS - S(T1) = MojAk+j + EROJAm+j 
0 0 
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and 
m-k-I k 

(2.12) s(T) - s(i+1) = E MyAk+J + E R A,+p i = 1, ... g, - k - 1, 
i-l 0 

where 

Mo= [k + j]!/[j]!- ([i] + 92qi)k, j =0. . .,r -k-I 

Mij - 1 =929, i = 1,.. ., r-k-1, 

MY= j - i + 1] + 92qj i+ 1)k _ ([j - i] + 92qj j)k, 

i= 1,...,mr-k-1;j=i,...,nm-k-1, 

Roj=[k !Ckjk-TJ, j=0,...,k, 

=j = , - T+, i =1, *, mr-k- ;j = 0,.. ., k, 
with Ckjk = tk/[k]! + O(qm k+l) as in the proof of Lemma 1.2. 

Since the Aj are bounded and 

Mii= 1 -Ok + 0(q), i=0,...,m- k- 1, 

Moj <[k +j]k _[j]k < q1[k]k[k + j]k-I < qjk(1 - q)-k 

Myj < [j - i + 2]k -[j _ j]k < qj-ik(l - q) -kg 

j = i + 1, ... , m-k-1, 

oR0j1 < qmk (j + 1)(1 q)- 

IRj I < qm-k-j(l - q) q 

the system (2.11) and (2.12) has the form 

( I - O2)Ak = -s(T1) + O(q), 

k2Ak+i-I + (1 - O2)Ak+i = S(i) -s(+1) + O(q), = 1, ... ., m - k - 1, 

which solves as 

Akl-2(-l1)'+ - ri~ 1+ 0() 
I 1- 2 2 2Ok j 

(2.13) i = 0, ... ,min( - 1, m- k -1), 

2(- 1 
+ ri+ I 

?2 2ri 1+0I 

i 0, ... ,m- k- I -,u, 
if r2 #& l and as 

Ak+l = (-l)'+'(2 + 4i) + O(q), i = 0, ... , min(-1, m - k -1), 

Ak+u+i = (-l)'+'(2 + 4i- 41i) + O(q), i = 0, ... , m-k - I -, 
if r2 = I provided that the buildup of O(q) terms is bounded independently of m. 
This will be the case if qr2 < I as q tends to zero, a condition that can be met 
independently of m. By Lemma 1.3 these Aj are bounded independently of m. 
Therefore, (2.10) must hold and (I - Wk)k <2 
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To complete the proof of (2.6) we now suppose that wk +1 > 0. Since 02 = 1- 

Wk + O(q), we must now show that O2 > 2 as q tends to zero, that is 

(2.14) r = Ok/ (I - ok) > I as q tends to zero. 

Since the Ti have "moved over one interval", Eqs. (2.1 1) and (2.12) are replaced by 

-S(TI) =[k]!Ak + k ([k +j]!/[j]!- ([j - I] + 2J21- )k)+j 

(2.15) k 

+ E R?jAm+ 
0 

and 
m-k-I k 

S(Ti)- S(i+1) = MijlAk+j+ E RiAm+j9 

(2.16) 0 
i = 1I,...,9m -k- 2, 

and the bounds on Moj and R,, are replaced by 

l[k + j]!I[j]! - Qj -I] + 0j2qj- I)kl <qj-lk(l - q) -kg 

oR011 < qmk (j + 1)(1 q)- 

IRI1 < qm-k-l-(1 - j) 

This incomplete system now has the form 

Ak + (I - O2)Ak+l = -S(T1) + 0(q), 

OAk+i + (1 - O)k+i+k = s(i) -)s(-si+1) + 0(q), i = 1, ... , m - k - 2. 

Adding the equation 
k 

(2.17) S(Tm-k_I) = Am-ik2 + Am+jTA-k-l = Am-iOk + S( 1) + 0(q) 
0 

and imposing the restriction qr,-' < I permits us to solve this system backwards in 
terms of s(- 1) as 

A (-m-I-k-[L -i 

AO - 1 [2 - (I + r2)r-'] + (1 + r2)(-r2)-is(-') 

(2.18) 1 i-l 
-k +O~ - 1 , [2 -(1I + r2)rji(2 - rm+k +I+ I) ] 

+ (1 + r2)(-r2)m+k+O+Iis(_1) + 0(q), i = 1, . . ., , 

if 0? ,i ?m- k- 2andas 

(_ 1), +km+uk 1 

A(219 = = 1 [2 - (I + r2)r2 ] 

(2.19) ~ 2o 20- 12 

+ (1 + r2)(-r2s(-1) 
+ 0(q), i = 1, ... , m - k - 1, 

if > m -k - 1. Since the Aj are bounded independently of m, (2.14) must hold 
and(I - Wk+I) > 2 
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The proof that (2.4), (2.5), (2.6) are necessary conditions for IIPII to be bounded 
independently of m as q tends to zero is complete. 

To prove that (2.4), (2.5), (2.6) are sufficient that IIPII be bounded independently 
of m as q tends to zero, we will use the approach outlined in the proof of Lemma 
1.1. That is, we will first show that, for each s = s, the block Am, ... . Am+k is 

bounded and then argue recursively from bounds on s(T) (replacing s(ti) in the 
proof of Lemma 1. 1) that Am - i (and Am +k+ i) i = 1, . .. , m - I, are bounded 
independently of m. Finally, we will use (1.2) and (2.13) or (2.18) or (2.19) to bound 

s,,(t) for all t and all ,i. 
If a = 0 and b = k + 1, the first step, bounding the block Am ... ., Am+k is easy 

since (2.9) implies that 

k 

(2.20) EAm+j'Ti-k+i = 1, i= k + I -b,. . .,k -a, 
0 

and (2.4), (2.8) give a bounded inverse for the Vandermonde matrix (r,-k+i). 

However, if b = k then the i = 0 equation of (2.20) is replaced by 
k 

(2.21) O2Arn_I + Am+jT'n k 

0 

If a = 1, there is a similar replacement of 
k 

(2.22) Am +,Tm + OlAm+k+l ? 1 
0 

for the i = k equation of (2.20). 
Therefore, if b = k (and/or a = 1), a preliminary step to eliminate OkA1 from 

(2.21), at the expense of adding a bounded quantity to the right member, is 
necessary. While eliminating kAmi through a sequence of upper triangulation 
steps on (2.11), (2.12), (2.21) is straightforward, there must be an argument that 
OkAmi is bounded independently of m as q tends to zero independently of m. The 
following lines supply this argument. 

Let b = k and let s be any of the s,, given by (2.2). Using the bounds on 
M = (Mij), we see that this matrix is diagonally dominant if q is such that 
1 - ok > ok + kq(l - q)<k. But (2.5)a is equivalent to I - ok > Ok for suffi- 
ciently small q, so that this condition can be met by imposing a further restriction 
on q. 

Let qo > 0 and 8 > 0 be such that 8 = I - 2 k - kqo(I - qo)-k-l. Then the 

solutions of a system 

Mx = b 

satisfy maxilxil < S' maxilbil by the usual diagonal dominance argument. Apply- 
ing this fact with 

bo = [ k ]!AkkS - S(T) =-(Tl) 

bi = s(T) -s(Ti+ 1 ), 19 I . . .,9 m -k k-I,9 

as well as with 

bi = -Rij, i = 0, ..., nm-k - I, 
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for eachj = 0, ... , k, yields 
k 

Am_1 = C + , CjAm+j 
0 

with 

ICI < 8-' max{Is(Tr)I, Is(T) - s(i+,)I: i = 1, ,m - k - 1) = 2/8, 

ICoI < 8-' maxlRiol = ROO = O(qm-k ), 

1C71 < 8&' max|Rij = ITm-k-1 -Tm-kl_ 

1(1 + q + - (1 + O2qylS/ < q[2]j[3]' /a 

< qi[ 3 ]j1 = O(q), j = 1, ... ., k. 

Combining these deductions with (2.21) gives the equation 
k 

(2.23) XAm+j(Tmj-k + c2/) = S(Tm-k) - CO29 
0 

which can be adjoined to (2.20). Since Cj = O(q) and Tm-k+l- Tm-k = 2Wk + 

O(q), the resulting system has a bounded solution as q tends to zero. We have 
assumed that a = 0. If a = 1, a similar argument at Tm is needed. 

We have completed the first step in the proof of sufficiency, i.e., we have shown 
that the set Am, .. . ., Am+k is bounded. But now (2.12) or (2.16) and their symmet- 
ric counterparts imply immediately that the set Ak, ... , A2m is bounded. An 
argument similar to the proof of Lemma 1.2 gives O(q') bounds on Ak-i and 
A2m+i, i = 1, ... , k - 1. The second step in the proof is completed. 

Now we must bound s,.(t) for all t and all ,i. For -I < t < + 1, the boundedness 
of Am9 ... , Am+k and (2.4) give a uniform bound on s,A(t). If ti < t < tm, there is a 
9, in [0, 1] and an i > 0 such that tm-i < t = tmi+l - 9q i = -[i] - 9,qi < 

tm -i+,. Then 

m-I k 

s(t) = , A1([i +j - m] + Oqi+j-m)k + Am+jti 
rn-i 0 

If i < m - b, then Tm+lbi = -[i] - 02q' and 

IS(t)I < IS(Tm+l-b-i)I + IAm il + O(q) = I + IAm_il + O(q) 

can be easily shown. If i > m - b, a modified argument gives 
k 

Is(t)l < Is(TI)l + E |Aj| + O(q) = 1 + lAkl + 0(q). 

Thus, the s,1(t) are uniformly bounded for all ft and all t so that lIP II is bounded 
independently of m as q tends to zero. Ol 

3. Two Special Cases. Theorem I provides counterexamples when (2.4), (2.5), 
(2.6) are not satisfied, e.g., interpolation at the knots with k > 2 or interpolation at 
weighted two-knot averages with k > 3. The condition that q tend to zero 
compares (contrasts?) with the often-used condition that the local mesh ratios 
(t - t,)(t - t,) I i-il = I be bounded. 
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For k > 3 and q = 1, it is easy to select weights wj satisfying (2.4), (2.5), (2.6) 
which still produce unbounded spline interpolation. Thus, even for two-sided 
q-splines, these conditions are not sufficient to guarantee bounded interpolation. 
Indeed, the method of their derivation suggests that they are linked quite closely to 
the tendency of q to zero. 

For the two special cases which follow it is not clear that we need q to tend to 
zero. Computational evidence with small k suggests, in fact, that q tending to zero 
gives "worst-case" results. Thus, Theorems 2 and 3 are imperfect in that the 
condition that q tend to zero may be superfluous. 

THEOREM 2. Let t be given by(1. 1) and, for each k > I and m > k, let T be given by 

(3.1) Ti = (ti+1 + ti+2 + * * * +ti+k)/k, i = 1, . .. , n. 

Then, IIPII is bounded as q tends to zero. Moreover, there exist absolute constants 
I < C1 < C2 such that, for each k > 2, 

C k < IPII <C2k asqtendstozero. 

THEOREM 3. Let t be given by (1. 1) and, for each k > I and m > k, let T be given 
by (2.3) with 

(3.2) W= Wk+1 = sin 2(ak/2), 

W32= sin(ak)sin(2jak), j = 1, ... , kg 
where ak = q/(2k + 2). Then, IIPII is bounded as q tends to zero. Moreover, there 
exist absolute constants 0 < C3 < C4 such that, for each k > 2, 

C3 log k < PII < C4 log k as q tends to zero. 

Proof of Theorems 2 and 3. The assertions that II P I is bounded as q tends to zero 
are proved by showing that (2.4), (2.5), (2.6) hold. These follow readily, since, in 
Theorem 2, 

(1 - Wk)k = (1 - W1)k = (k - l)k/kk < I/e < 3/8 

while, in Theorem 3, 

(1 - Wk +I) = (1 - Wo) = CoS2k (ak/2) > (1 - a2/8) 

> 1- 7ak/8 > (8k + 3)/ (8k + 8) > 3/4. 
In Theorem 2, the lower bound on IIP II follows from the fact that, as q tends to 

zero, the nodes 

T1m-k+I9 Tm-k+29 ... 9 Tm-k+j. * T m- I 

tend to 

(2 - k)/k, (4 - k)/k, . .., (2j - k)/k, ... , (k - 2)/k, 

and that, fors = s, withim - k < ju <m - 1, 

Is( +)I =1 (I - rm-k)/ (I - 22k) + O(q) > 1/ (I - ok) + 0(q) >1, 

so that II P II is bounded below by any lower bound for polynomial interpolation on 
[-1, + 1] at the equally-spaced nodes 

-1, (2 - k)/k, (4 - k)/k, ..., (2j - k)/k, ... , (k - 2)/k, + 1. 
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See Rivlin [7, pp. 96-99] for a proof that such polynomial interpolation grows 
exponentially. 

Similarly, in Theorem 3, the lower bound on IjP j follows from the fact that 

Tm-k' .. . Tm approach the Chebyshev nodes -cos(2jak - ak), i = 1, ... , k + 1, 
as q tends to zero and the fact that polynomial interpolation on these nodes has 
logarithmic growth. See [7, pp. 93-96]. 

To complete the proof that IjP j grows exponentially or logarithmically in 
Theorem 2 or Theorem 3, respectively, it is necessary only to show that, for each li, 
s,.(t) is "controlled" outside (-1, + 1). This fact follows from the closing lines of the 
proof of Theorem 1, where it was noted that, for t, < t < tm, there is aj < m such 
that Is(t)l < I + 1Ajl + O(q). For Theorem 2, (3.1) and (2.13) imply that 

maxIA1I < 2 2e- maxlAjl < k + 0(q) <-2 + ?(q) < 8, 

so that Is(t)l < 10 for t < -I as q tends to zero. For Theorem 3, (3.2) and (2.18), 
(2.19) imply that 

maxlAIl < 
2 

+ 21s(-1)l + O(q) 

2 
<K + 21s(-1)I + 0(q) 

2 coS2k(ak/2) - 1 

< 4 + 21s(-I)I + O(q), 

so that Is(t)I < 6 + 21s(-1)l for t < -I as q tends to zero. Symmetry considerations 
give like bounds for Is(t)I on + I = tm+l < t < t2m , 

The proof of Theorem 2 and Theorem 3 is complete. E] 
If q = I (not covered by these theorems), two-sided q-spline interpolation is 

essentially the same as cardinal spline interpolation, for which logarithmic growth 
of IIPII with k has been demonstrated; see [6]. This fact supports the conjecture 
that q tending to zero gives "worst-case" results for the nodes (3.1). 

For cubic spline interpolation with arbitrary knot spacing and the nodes (3.1), de 
Boor [2] has shown that IIPII < 27. He conjectures that IIPII < 3 or 4 may be true. 
The following supplies a lower bound on lim supI IPI 1, where the lim sup is taken 
over all ordered knot spacings. 

THEOREM 4. Let k = 3 and let t and T be given by (1.1) and (3.1), respectively. 
Then 

limljPjl = (222VTiT + 999)/1331 = 2.507825... 

where limlI P denotes the limiting value of IIP II as q tends to zero and m tends to 
infinity. 

Proof. Let s = s,/ with tL = m -1. From (2.21) and (2.13) 

(( - L-m+k 
-k) + 

(3.3) s(-I ) = l #9 ( I -rm ) (q) 
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for each k > 2 and u > m - k. Similarly, 

(3.4) s(+ 1) - rm O(q) 

for k > 2 and IL < m - 1. Thus, for the case presently under consideration, s(t) 
tends, on [-1, + 1], to the cubic p(t) satisfying p(+ 1) = 27/11 and p(? 1/3) = 
?1. This cubic is 

p(t) = (-297t3 + 243t2 + 297t - 27)/88. 
It has a maximum on [-1, + 1] of (222VTiT + 999)/1331 at t = 
(9 + 2VTiT )/33. Showing that limliPli exists and is equal to this maximum 
requires a discussion (which we omit) similar to the last paragraph in the proof of 
Theorem 1 above. Ea 

For arbitrary k it is easy to find p(t), the polynomial which Sm I(t) approaches as 
q tends to zero and m tends to infinity. From (3.1) and (3.4) 

lims(+1) = Zk = 
I 

1 - 2((k - )/k)k 

From (3.3), lim s(- 1) = (1)k - Izk. Then standard combinatorial formulas give (see 
Gould [4, p. 59]) 

(-4T T +j ) +2+ kzk (T + I) 

if k is even with 1 = k/2 and T = It, and 

p(t) (')/X (-4Y2 T T + j(-1/2) + 2T + kzk( T + 
I-1/2') 

0 2 I jk \ 21 

if k is odd with 1 = (k - 1)/2 and T = kt/2. The maximum of p(t) on (k - 2)/k 
< t < +1 is a good lower bound on lP II as q tends to zero and m tends to 
infinity. 

The following table was computed via double-precision arithmetic in FOR- 
TRAN on an Amdahl 470/V7 computer. All entries are rounded down. 

Lower bounds on lim suplI PI l 

k max p(t) k max p(t) k max p(t) k max p(t) 

2 2.0000 7 7.7939 12 9.02 x 10 27 9.45 x I05 
3 2.5078 8 11.8194 15 5.13 x lCY 30 6.60 x 10I 
4 3.0814 9 18.7344 18 3.17 x 103 33 4.67 x 107 
5 3.9686 10 30.7986 21 2.05 x ICP 36 3.34 x 10I 
6 5.4087 11 52.1254 24 1.37 x 105 39 2.42 x 1IC 

This table, in which the exponential growth is clear, is associated with Theorem 2 
above. A corresponding table of lower bounds on lim suplIPl for the node 
assignment of Theorem 3 can be computed from the fact that the Lebesgue 
function for polynomial interpolation on the Chebyshev nodes attains its maximum 
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at t = 1; see [7, Eq. (4.2.19)]. The first few entries of such a table are: 

(1,1.414) (2,1.666) (3,1.847) (4,1.988) (5,2.104) (6,2.202). 

A later entry is (35,3.243). The logarithmic growth is clear. For k = 1 with arbitrary 
knots it can be shown that IIPII < V when nodes are specified by (3.2) above. 
Whether the other bounds are "good" bounds for the arbitrary knot case is 
problematical. 

4. Remarks. For one-sided q-splines with spline knots ti = (1 - q')/(l -q), 
i = ..., -1, 0, 1, 2, .. ., and interpolation nodes Ti = ti + Oq', where 0 is fixed, 
0 < ( < 1, S. L. Lee [5] has considered eigensplines, i.e., nontrivial splines s(t) 
satisfying s(t) = As(1 + qt) for some fixed eigenvalue X. Setting X = -1 yields, for 
each k > 2, a certain equation Fk(q, 0) = 0. If q and either 01 or 02 defined above 
satisfy this equation, then two-sided q-spline interpolation is unbounded. Lee [5] 
has shown that Fk(O + , 0) = C[20k - 1][2(1 - 0)k _ 1]. 

For quadratic splines with arbitrary knots ti, Demko [3] has shown that interpo- 
lation is bounded independently of t, and Ti if the nodes Ti satisfy T, = ti - 

(ti+2 - ti+ 1) with A,2 < y < 2 and (1- y)2 (Y <2. Consequently, for k = 2, the 
results of Theorem 1 above with (2.5)a and (2.6)a are valid for all q and not just as 
q tends to zero. 
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